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Abstract
We point out that the half-filled Peierls insulator, celebrated for its soliton
excitations and its application to trans(polyacetylene), is an excitonic insulator
in which collectively bound electron–hole pair excitations (excitons) are mixed
into the ground state. Unlike the bound electron pairs of the Bardeen–
Cooper–Schrieffer (BCS) superconductor, however, the excitonic pairs can be
photoionized leading to the direct observation of the excitonic energy gap 2� in
the optical conductivity. A deeper understanding is provided of the discovery
of Kuper in 1955 of a BCS-like gap equation describing the thermodynamic
properties of the Fröhlich (1954) one-dimensional charge-density-wave state.

1. Introduction and synopsis

It is interesting that the mean-field gap equations describing the thermodynamic evolution
of the BCS superconductor [1] and the Peierls distortion of a 1D or suitably nested higher
dimensional metal [2] are mathematically identical. Their familiar forms are

�k = N−1
∑

k′
V (k, k ′)(�k′/2Ek′)(1 − 2 f (Ek′)), (1)

where V (k, k ′) is the pairing potential for the case of the superconductor while it is the electron–
lattice interaction potential for the Peierls insulator. Here, k denotes the electronic wavevector.

In both cases Ek =
√

ε2
k + |�k |2 is the electron quasi-particle (QP) energy, while εk is the band

energy in the normal state measured relative to the chemical potential µ. f (E) is the Fermi
function 1/(exp(E/kBT ) + 1). The BCS relation [1] was derived in 1957 while the Peierls
form was obtained by Kuper [3] in 1955 following the original work of Fröhlich in 1954 on
the charge-density-wave (CDW) state of the 1D metal. Peierls [2] independently noted the
latter for the 1D and suitably nested higher dimensional metals in 1955. Today, the system
in the joint Fröhlich–Peierls work is generally referred to as the Peierls insulator (PI). The
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Figure 1. Schematic diagrams of a zigzag dimerized Peierls insulator. There are two atoms, A and
B, in the unit cell of extent 2b. The bond AB is shorter than the bond BA. There is one electron
per atom.

detailed tight-binding theory of the PI was worked out in 1973 by Rice and Strässler [4] with
the inorganic 1D metal K2Pt(CN)4Br0.3·3H2O (KPC) [5] in mind, while the same calculation
was repeated in 1980 by Su, Schrieffer and Heeger [6] (SSH) with the conjugated polymer
trans(polyacetylene) [7] (PA) in mind. At this time, Brazovskii [8], Rice [9] and SSH [10] had
independently suggested the possibility of (nonlinear) soliton excitations in PA when doped
away from half-filling. The electrodynamic properties of the PI were investigated by Lee et al
[11] in 1974.

In this paper we point out that the half-filled PI is actually an excitonic insulator [12]
in which collectively bound electron–hole pair excitations (i.e., excitons) are mixed into the
ground state. This is not unlike the situation in a BCS superconductor in which pairs of
electrons are mixed into the ground state [1]. However, the excitonic pairs, unlike the electron
pairs in the clean superconductor, can be directly photoionized with light with energy h̄ω � 2�

(where 2� is the average excitonic energy gap), leading to the appearance of a gap in the optical
conductivity of the undoped chain. A deeper understanding of the PI is thus achieved. The
somewhat remarkable discovery of Kuper in 1955 of a BCS-like gap equation can be easily
understood.

The layout of our paper is as follows. The standard mean-field treatment of the half-filled
Peierls problem is considered. The effect of the lattice is eliminated leading to a lattice-
mediated electron–hole attraction. This leads to the excitonic ground state. The number of
bound electron–hole pairs in the ground state Np is calculated, as is also the optical conductivity
σ1(ω) of the chain in the excitonic state. Finally, our conclusions are discussed.

2. The standard Peierls problem and elimination of the lattice distortion

The Hamiltonian describing the dimerized half-filled PI may be written in the form

H = K Nδr2/2 −
∑

jσ

[(t0 B†
jσ (A j−1,σ + A j+1,σ ) + h.c.) + (γ δr B†

jσ (A j−1,σ − A j+1,σ ) + h.c.)].

(2)

We have defined the PI to be a dimerized linear chain with one electron per atom with no direct
electron–electron interactions. For convenience, we have taken a zigzag linear chain. Figure 1
shows the choice of the labelling of the A and B atoms of the PI unit cell. In equation (2) B†

jσ

and A†
jσ are fermion operators which create electrons with spin polarization σ at the B and A

sites respectively. The quantity t0 is the hopping integral for the undimerized chain and δr is
the bond alternation amplitude in the dimerized chain. The hopping integral for the shorter
bond is t0 + γ δr while it is t0 − γ δr for the longer bond. γ = −∂ t/∂r , which we refer to as
the electron–lattice coupling constant. K is the sigma bond linear spring constant and N the
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Figure 2. The band structure of the undimerized (broken line) and dimerized (solid line) zigzag
chain. With one electron per atom, the lower band a is completely filled at T = 0.

total number of atoms in the chain (N → ∞). The sum in equation (2) over j runs over the
N/2 B sites. The length of the unit cell of the dimerized chain is 2b (see figure 1).

The standard solution [4] of (2) leads to the energy bands Ek = ±
√

ε2
k + �2 sin2 kb, where

εk = 2t0 cos kb is the conduction band energy of the undimerized chain and 2� = 2γ δr is the
energy gap at the X point of the dimerized chain and determined by the familiar gap equation

1 = (4γ 2/K N)
∑

kσ

sin2 kb/Ek. (3)

The wavevectors k lie in the range −π/2 < kb � π/2. Ostensibly, the dimerized chain is a
simple band insulator.

By means of the simple transformations Akσ = (akσ + bkσ )/
√

2 and Bkσ = (−akσ +
bkσ )/

√
2, the Hamiltonian (2) may be rewritten in the ‘ab’ form

H = K�2/8γ 2 +
∑

kσ

[εk(b
†
kσ bkσ − a†

kσ akσ ) − i� sin kb(b†
kσ akσ − a†

kσ bkσ )]. (4)

For � = 0, it corresponds to the metallic band structure of the undimerized chain with the
finite density of states at the X point (k = π/2b) as shown in figure 2. The lower band a is
filled while the upper band b is empty at T = 0. If the direct Coulomb interaction is allowed
for, it is easy to see that this Fermi surface is unstable. An electron excited from the lower to
the upper band will bind to the hole in the lower band via the attractive Coulomb interaction.
The situation is quite analogous to the Cooper instability [13] in superconductivity.

Since �, or the lattice displacement γ δr , is a classical quantity we may formally
differentiate H with respect to � and express � in terms of the electronic parameters:

� = (4iγ 2/K )
∑

kσ

sin kb(b†
kσ akσ − a†

kσ bkσ ). (5)

This value may be substituted back into the Hamiltonian (4), thus eliminating the lattice
distortion from the Hamiltonian: we obtain

H =
∑

kσ

εk(b
†
kσ bkσ − a†

kσ akσ ) + (2γ 2/K N)L2, (6)

where

L =
∑

kσ

sin kb(b†
kσ akσ − a†

kσ bkσ ). (7)

Inspection of the term L2 in equation (6) shows that it describes an attractive electron–hole
interaction, as well as, interestingly, the simultaneous creation and destruction of electron–
hole pairs. Within mean-field theory, the presence of L2 will lead to an excitonic ground state.
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Finally, we express the Hamiltonian in terms of hole operators a†
kσh which create holes in the

filled valence band. They are defined as a†
kσh = a−k,−σ . The final Hamiltonian that we wish

to work with is thus

H = −
∑

kσ

εk +
∑

kσ

(b†
kσ bkσ + a†

kσhakσh) + (2γ 2/K N)
∑

kσ

∑

k′σ ′
Wkk′ Pkσ Pk′σ ′, (8)

where

Wkk′ = sin kb sin k ′b (9)

and

Pkσ = b†
kσ a†

−k,−σ,h − a−k,−σ,h bkσ . (10)

3. The excitonic ground state

The excitonic ground state of (8) is easily demonstrated in the mean-field form and we need
not go into detail [12]. We take as the order parameter

�k = (4γ 2/K N)
∑

k′σ ′
Wkk′ 〈Pk′σ ′ 〉, (11)

where 〈A〉 denotes the thermodynamic average of the operator A. On linearizing the
Hamiltonian (8) in the usual manner the resulting H is diagonalized by the transformation
to the new electron and hole QP operators βkσ and αkσ :

bkσ = ukβkσ + v∗
k α

†
−k,−σ ,

a†
−k,σ,h = −vkβkσ + u∗

kα
†
−k,−σ .

(12)

Here the complex coefficients are uk = |uk | exp(iS/2) and vk = |vk | exp(−iS/2), provided
that we have defined �k = |�k | exp(iS). The moduli are

|uk |2 = (1 + εk/Ek)/2,

|uk |2 = (1 − εk/Ek)/2.
(13)

These equations lead to the gap equation for �:

1 = (4γ 2/K N)
∑

kσ

(sin2 kb/Ek)(1 − 2 f (Ek)), (14)

which is identical to the standard result, equation (3).
The number of pairs Np mixed into the ground state is easily calculated from Np =∑

kσ 〈b†
kσ bkσ 〉. With the use of (12), we find the result

Np =
∑

kσ

[(1 − εk/Ek)/2 + f (Ek)εk/Ek]. (15)

When � = 0, above the mean-field transition temperature, Np = ∑
kσ f (εk) is just the number

of thermally excited electron–hole pairs. At the absolute zero, Np = ∑
kσ (1−εk/Ek)/2. Thus

Np �= 0 if � �= 0. The latter is the hallmark of the excitonic insulator.

4. The optical conductivity

The optical conductivity σ1(ω) is given by the Kubo formula [14]

σ1(ω) = lim
q→0

1 − e−ω/kB T

ω

∫ ∞

−∞
dt eiωt 〈J (q, t)J (q, 0)〉, (16)
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where the time-independent wavevector-q-dependent current is

J (q) = e
∑

kσ

w0eiqb/2 sin kb(b†
k+q/2,σ bk−q/2,σ − a†

k+q/2,σ,h ak−q/2,σ,h ), (17)

where the velocity w0 = 2t0b/h̄. At T = 0, equation (16) may be evaluated with (17) and (12),
with the result that the optical conductivity of the excitonic insulator is

σ1(ω) = (πe2/h̄ Nbd2ω)
∑

kσ

w2
k |�k |2δ(ω − 2Ek/h̄)/E2

k . (18)

Here d is the interchain spacing perpendicular to the chain axis, while wk = w0 sin kb. For
weak coupling, the source of the oscillator strength of (18) may be seen to reside in the Drude
conductivity above the mean-field transition temperature; with � �= 0, the Drude conductivity
vanishes at the absolute zero. Equation (18) is strictly derived for the half-filled band case.
For the incommensurate PI the ‘sliding’ conductivity of the CDW enters the conductivity sum
rule [11]. In their celebrated 1966 paper on the excitonic insulator, Jérome et al [15] did not
consider the frequency regime ω � 2�. Consequently, to our knowledge, the photoexcitation
of excitonic pairs in the excitonic insulator has been ignored up to now.

The minus sign in equation (17) reflects, of course, the difference in sign of the electron
and hole charges. In the excitonic phase each pair carries an electric dipole moment. Therefore,
light of frequency ω can directly photoionize a pair into an electron and hole QP according
to the relation h̄ω = Ek+q/2 + Ek−q/2, where q 	 0 is the wavevector of the light. This is
precisely expressed by the result (18). For the clean superconductor, the Cooper pair has no
internal transition dipole moment and consequently there can be no light absorption for any
finite ω [14].

5. Conclusions

We have shown that the half-filled Peierls insulator within the framework of mean-field theory
is an excitonic insulator. In this state, there are collectively bound electron–hole pairs (excitons)
mixed into the ground state. At zero temperature the number of such bound pairs is

Np =
∑

k

(1 − εk/Ek), (19)

where Ek =
√

ε2
k + �2 sin2 kb is the excitonic QP energy and 2� is the excitonic energy gap

at the X point of the chain. It is determined self-consistently by the BCS-like equation

1 = (8γ 2/K N)
∑

k

sin2 kb/Ek. (20)

This equation is identical to the usual gap equation for the Peierls gap. A non-vanishing �

guarantees a non-vanishing Np.
Since the bound electron–hole pairs possess a dipole moment, they may be photoionized

by light leading to the absorption of light at the energies h̄ω � 2�, where 2� is the mean
excitonic energy gap of the insulator. The absorption is polarized along the chain axis and the
insulator is rendered a photoconductor.

A deeper understanding of the Peierls insulator is thus achieved. As an excitonic insulator
it is, like the BCS state, a two-fermion collective state phenomenon involving an attractive
interaction between pairs of fermions. And, again like for the BCS state, the attractive pair
interactions are lattice mediated. The somewhat remarkable discovery of Kuper in 1955 of a
BCS-like gap equation for the Fröhlich CDW state can now be understood.

That polyacetylene itself is probably an excitonic insulator is implied by the impressive
body [16] of work on the effects of electron–electron interactions on the insulating state of
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the polymer. In particular, the work of Baeriswyl and his co-workers [17, 18] has stressed the
importance of the attractive electron–hole interaction that arises from the nearest neighbour
electron–electron interaction V in the polymer. Typically, V is found to be a much larger
effect than the electron–lattice interaction. If the latter is neglected, one is in fact dealing with
the problem of the regular excitonic insulator [12]. This point was made already in 1979 by
Giuliani et al [19].

The prospect of quasi-1D polymeric excitonic insulators is, we believe, a particularly
interesting one.
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